215k views
5 votes
(4a + b)(a-2b)(3c-d)

User AlbertVo
by
7.3k points

1 Answer

4 votes

The simplified expression is \(12ac(4a + b) - 2bd(3c - d)\).

To simplify the expression \((4a + b)(a - 2b)(3c - d)\), you can use the distributive property and multiply the factors:

\[

\begin{align*}

&(4a + b)(a - 2b)(3c - d) \\

&= (4a + b) \cdot (a - 2b) \cdot (3c - d) \\

&= (4a \cdot a \cdot 3c) + (4a \cdot a \cdot (-d)) + (b \cdot a \cdot 3c) + (b \cdot a \cdot (-d)) \\

&\quad + (4a \cdot (-2b) \cdot 3c) + (4a \cdot (-2b) \cdot (-d)) + (b \cdot (-2b) \cdot 3c) + (b \cdot (-2b) \cdot (-d)) \\

&= 12a^2c - 4ad + 3abc - bd - 24abc + 8abd - 6b^2c + 2bd \\

&= (12a^2c - 24abc - 6b^2c) + (-4ad + 3abc + 8abd + 2bd) \\

&= 12ac(a - 2b) - 2bd(2a - 1c) \\

&= 12ac(4a + b) - 2bd(3c - d).

\end{align*}

\]

Therefore, the simplified expression is \(12ac(4a + b) - 2bd(3c - d)\).

User ViSa
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories