509,022 views
22 votes
22 votes
Write a linear equation that models the data in the table

X Y
-6 0
-3 2
0 4
3 6

Equation:?

User ZarX
by
3.0k points

1 Answer

15 votes
15 votes

to get the equation of any straight line, we simply need two points off of it, let's use the ones in red provided in the table in the picture below


(\stackrel{x_1}{-3}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{6}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{2}}}{\underset{run} {\underset{x_2}{3}-\underset{x_1}{(-3)}}} \implies \cfrac{4}{3 +3} \implies \cfrac{ 4 }{ 6 } \implies \cfrac{2 }{ 3 }


\begin{array} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{2}=\stackrel{m}{ \cfrac{2 }{ 3 }}(x-\stackrel{x_1}{(-3)}) \implies y -2 = \cfrac{2 }{ 3 } ( x +3) \\\\\\ y-2=\cfrac{2 }{ 3 }x+2\implies {\Large \begin{array}{llll} y=\cfrac{2 }{ 3 }x+4 \end{array}}

Write a linear equation that models the data in the table X Y -6 0 -3 2 0 4 3 6 Equation-example-1
User Diego Tejada
by
2.8k points