54.8k views
6 votes
In the right ΔABC, AN is the altitude to the hypotenuse. Find BN, AN, and AC, if AB=2√5 in and NC= 1 in.

User MSajjadi
by
3.5k points

1 Answer

14 votes

Answer:


BN=4\ \text{in}


AN=2\ \text{in}


AC=√(5)\ \text{in}

Explanation:

Let
BN=x


BC=c


NC=y=1\ \text{in}


AB=a=2√(5)\ \text{in}


AC=b

We have the relation


(BC)/(AB)=(AB)/(BN)\\\Rightarrow (c)/(a)=(a)/(x)\\\Rightarrow c=(a^2)/(x)\\\Rightarrow x+1=(a^2)/(x)\\\Rightarrow x^2+x=20\\\Rightarrow x^2+x-20=0\\\Rightarrow x=(-1\pm √(1^2-4* 1* \left(-20\right)))/(2* 1)\\\Rightarrow x=4,-5


\boldsymbol{BN=4\ \text{in}}


h=√(a^2-x^2)\\\Rightarrow h=\sqrt{(2√(5))^2-4^2}\\\Rightarrow h=2\ \text{in}


\boldsymbol{AN=2\ \text{in}}


b=√(h^2+y^2)\\\Rightarrow b=√(2^2+1^2)\\\Rightarrow b=√(5)\ \text{in}


\boldsymbol{AC=√(5)\ \text{in}}

In the right ΔABC, AN is the altitude to the hypotenuse. Find BN, AN, and AC, if AB-example-1
User Kyle Roux
by
5.3k points