Final answer:
True. For any complete graph with n vertices, the number of spanning trees is given by the formula n^(n-2).
Step-by-step explanation:
True. For any complete graph with n vertices, the number of spanning trees is given by the formula n^(n-2).
So, for n≥2, the complete graph K_n has n^(n-2) spanning trees.
For example, if n=3, then the complete graph K_3 has 3^(3-2) = 3 spanning trees.