Final Answer:
The combined expression is (2y - y) / (y² - 10y + 24) + (y - 0) / (y² - 11y + 30), which simplifies to y / (y² - 10y + 24).
Step-by-step explanation:
To combine the given rational expressions, we first find a common denominator, which is the product of the two denominators: (y² - 10y + 24)(y² - 11y + 30). Then, we express each term with this common denominator:
![\[ (2y)/(y² - 10y + 24) - (y)/(y² - 11y + 30) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lf3diz7390gkef6ynhekfia6ynhg176n99.png)
The first term's denominator is (y² - 10y + 24), and the second term's denominator is (y² - 11y + 30). The common denominator is their product: (y² - 10y + 24)(y² - 11y + 30).
Now, rewrite each term with the common denominator:
![\[ (2y \cdot (y² - 11y + 30))/((y² - 10y + 24)(y² - 11y + 30)) - (y \cdot (y² - 10y + 24))/((y² - 10y + 24)(y² - 11y + 30)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/282vyzkdtvw4juogwvyeajn23e8two3hhp.png)
Combine the numerators:
![\[ (2y^2 - 22y + 60 - y^2 + 10y - 24)/((y² - 10y + 24)(y² - 11y + 30)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a3ywd3jow75fro00bph743m7hoecbqrh8n.png)
Simplify the numerator:
![\[ (y^2 - 12y + 36)/((y² - 10y + 24)(y² - 11y + 30)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/di69tbqylm19rnozdyfwy7a0bdl4i8s4hd.png)
Factor the numerator:
![((y - 6)(y - 6))/((y² - 10y + 24)(y² - 11y + 30)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7vhler5hwvwve5ehnwk6m3sqpcmg6agpp5.png)
Cancel out common factors in the numerator and denominator:
![\[ ((y - 6))/((y² - 10y + 24)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7wgobg9xfvvfz6lhlh4edpxz7ygfeim992.png)
Therefore, the final simplified expression is y / (y² - 10y + 24).