118k views
0 votes
Determine the exact value of each trigonometric expression. Express your answers in simplified radical form.

a) (sin 459) (cos 459) + (sin 309) (cos 60°)
b) (1 - tan 45°) (sin 30°) (cos 30° (tan 60°)
tan 30° + 2(sin 45°) (cos 60°)

User Asimo
by
7.7k points

1 Answer

4 votes

The simplified exact values for the given trigonometric expressions are sin 75° cos 105° + cos 75° sin 105° for part (a) and sqrt(3)/3 + sqrt(2) for part (b).

a) For the expression (sin 45°) (cos 45°) + (sin 30°) (cos 60°):

Using the angle sum identity for sine, sin(A + B) = sin A cos B + cos A sin B, we can rewrite the expression as follows:

(sin 45° + 30°) (cos 45° + 60°)

Now, applying the angle sum identities for sine and cosine, we get:

sin (45° + 30°) = sin 75°

cos (45° + 60°) = cos 105°

So, the expression becomes:

sin 75° cos 105° + cos 75° sin 105°

These angles do not have standard reference angles, so the expressions cannot be simplified further without a calculator.

b) For the expression (1 - tan 45°) (sin 30°) (cos 30°) (tan 60°) + tan 30° + 2(sin 45°) (cos 60°):

First, simplify each term:

(1 - 1) (1/2) (sqrt(3)/2) (sqrt(3)) + sqrt(3)/3 + 2(sqrt(2)/2) (1/2)

This simplifies to:

0 + sqrt(3)/3 + sqrt(2)

So, the exact value of the given expression is sqrt(3)/3 + sqrt(2).

User Joseph Cottam
by
7.5k points