52.0k views
0 votes
The weekly production cost C of manufacturing x calendars is given by C=32+5x, where the variable C is in dollars. What is the cost of producing 266 calendars?

User DCS
by
7.3k points

1 Answer

7 votes

Final answer:

To find the cost of producing 266 calendars, we substitute 266 into the production cost function C=32+5x, resulting in a total cost of $1362.

Step-by-step explanation:

The question asks for the cost of producing 266 calendars using the production cost function provided. Given that the cost function for producing x calendars is C=32+5x, where C is the total production cost in dollars, we simply need to substitute the value of x (the number of calendars) into the equation to find the cost.

To calculate the cost of producing 266 calendars, we plug 266 into the equation in place of x:

  • Cost of production (C) = 32 + 5(266)
  • C = 32 + 1330
  • C = $1362

So, the cost of producing 266 calendars is $1362.

User Sherina
by
7.5k points