92.2k views
0 votes
What value makes this proportion true (4)/(12)=(a)/(27)

1 Answer

5 votes

Final answer:

To solve the proportion (4/12) = (a/27), cross-multiply to get 4 \(\times\) 27 = a \(\times\) 12, which simplifies to 108 = 12a. Dividing both sides by 12 yields a = 9.

Step-by-step explanation:

To find the value of a that makes the proportion (4/12) = (a/27) true, we need to apply cross-multiplication. Cross-multiplication is when we multiply the numerator of one fraction by the denominator of the other fraction and set the products equal to each other. Following this method:

Multiply 4 by 27 to get one product.

Multiply a by 12 to get the second product.

After cross-multiplication, our equation will look like this: 4 \(\times\) 27 = a \(\times\) 12.

Calculating the left side, we have 108 = a \(\times\) 12. To solve for a, divide both sides of the equation by 12, which gives us a = 108 / 12. After dividing, we find that a equals 9.

Therefore, the value that makes the proportion true is a = 9.

User Icfantv
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories