88.2k views
2 votes
Expand (2x-3y)^(5) using Binomial theorem.

User Xolani
by
8.8k points

1 Answer

3 votes

Final answer:

To expand (2x - 3y)^5, we can use the binomial theorem. Applying the binomial theorem formula, we get the expanded form: 32x^5 - 240x^4y + 720x^3y^2 - 1080x^2y^3 + 810xy^4 + 243y^5.

Step-by-step explanation:

The binomial theorem provides a way to expand expressions of the form (a + b)^n, where a and b are constants and n is a positive integer. To expand (2x - 3y)^5, we can use the binomial theorem formula:

(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n

Applying this formula to (2x - 3y)^5:

(2x - 3y)^5 = C(5, 0)(2x)^5 + C(5, 1)(2x)^4(-3y) + C(5, 2)(2x)^3(-3y)^2 + C(5, 3)(2x)^2(-3y)^3 + C(5, 4)(2x)(-3y)^4 + C(5, 5)(-3y)^5

Simplifying each term, we get:

  1. C(5, 0)(2x)^5 = 1(32x^5) = 32x^5
  2. C(5, 1)(2x)^4(-3y) = 5(16x^4)(-3y) = -240x^4y
  3. C(5, 2)(2x)^3(-3y)^2 = 10(8x^3)(9y^2) = 720x^3y^2
  4. C(5, 3)(2x)^2(-3y)^3 = 10(4x^2)(-27y^3) = -1080x^2y^3
  5. C(5, 4)(2x)(-3y)^4 = 5(2x)(81y^4) = 810xy^4
  6. C(5, 5)(-3y)^5 = 1(243y^5) = 243y^5

Adding all the terms together, we get the expanded form of (2x - 3y)^5:

32x^5 - 240x^4y + 720x^3y^2 - 1080x^2y^3 + 810xy^4 + 243y^5

User Stevoisiak
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories