Answer:
Triangle B
Explanation:
For a triangle with sides a, b and c,
If c² = a² + b²
Then triangle will be a right triangle.
If c² > a² + b²
Triangle will be an obtuse triangle
If c² < a² + b²
Triangle will be an acute triangle.
By applying these properties in the given triangles,
Triangle A:
6 cm, 8 cm and 10 cm
6² + 8² = 36 + 64
6² + 8² = 100 [c² = a² + b²]
Therefore, it's a right triangle.
Triangle B:
310 in, 25 in and 35 in
25² + 35² = 625 + 1225
= 1850
Since, 310² = 96100
And 96100 > 1850 [c² > a² + b²]
Therefore, It's an obtuse triangle.
Triangle C:
8 ft, 15 ft and 35 ft
8² + 15² = 64 + 225
= 289
Since, 17² = 289 [c² = a² + b²]
Therefore, It's a right triangle.
Triangle D:
0.32 mm, 0.96 mm and 1 mm
(0.32)² + (0.96)² = 1.024
Since, 1² = 1
And 1 < 1.024 [c² < a² + b²]
Therefore, triangle will be an acute triangle.