55.1k views
4 votes
Using your own words, explain how to square a binomial such as (a+b)²

1 Answer

6 votes

Final answer:

To square the binomial (a+b)², multiply the terms following the FOIL method: First, Outer, Inner, and Last, which results in a² + 2ab + b² after combining like terms.

Step-by-step explanation:

To square a binomial such as (a+b)², you need to apply the rule that comes from the distributive property, often referred to as the FOIL method (First, Outer, Inner, Last). When squaring (a+b)², you're essentially multiplying (a+b) by itself: (a+b) * (a+b). Here’s a step-by-step method:


  • Multiply the First terms in each binomial together: a * a = a².

  • Multiply the Outer terms together: a * b.

  • Multiply the Inner terms together: b * a (which is the same as the outer).

  • Multiply the Last terms in each binomial together: b * b = b².

Now combine these results: a² + ab + ba + b². Since ab and ba are like terms, you can add them together.

Finally, the squared binomial is a² + 2ab + b². This is the expanded form of (a+b)².

User Douglas Royds
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories