Final answer:
To solve the quadratic equation 4x^2 - 17x + 4 = 0, we can use factoring.
Step-by-step explanation:
To solve the quadratic equation 4x^2 - 17x + 4 = 0, we can use factoring or the quadratic formula. Let's use factoring.
We need to find two numbers whose product is equal to the product of the coefficients of x^2 and the constant term, and whose sum is equal to the coefficient of x. In this case, the product of the coefficients is 4 * 4 = 16, and the coefficient of x is -17.
We can rewrite the middle term -17x as the sum of the two numbers that have been multiplied: -16x - x. Factoring, we get (4x - 1)(x - 4) = 0.
Setting each factor equal to zero and solving for x, we find x = 1/4 or x = 4. These are the solutions to the quadratic equation.