180k views
3 votes
Solve the equation. x(5x+4)=1

1 Answer

3 votes

Final answer:

To solve the equation x(5x+4)=1, expand it to the standard quadratic form 5x^2 + 4x - 1 = 0 and then apply the quadratic formula to find the possible values for x.

Step-by-step explanation:

To solve the equation x(5x+4)=1, we must first expand the equation to its standard quadratic form by distributing the x across the terms in the parentheses. The expanded equation becomes 5x^2 + 4x - 1 = 0. At this point, we have a quadratic equation in the form of ax^2 + bx + c = 0. Although this equation does not seem to have easily factorable numbers, the quadratic formula can be used to find x.

The quadratic formula is x = (-b ± √(b^2-4ac))/(2a), where a, b, and c are coefficients from the quadratic equation ax^2 + bx + c = 0. Substituting our coefficients (a=5, b=4, and c=-1) into the formula, we get two potential solutions for x.

After calculating these values, the student will have the two possible values for x that satisfy the original equation.

User JohnRudolfLewis
by
7.6k points