Final answer:
To evaluate the integral ∫ x √(3x^2+4) dx, use the substitution method. For the integral ∫ cos^3 x sin x dx, also use the substitution method.
Step-by-step explanation:
To evaluate the integral ∫ x √(3x^2+4) dx, we can use the substitution method. Let u = 3x^2+4. Taking the derivative of u with respect to x gives du/dx = 6x, which implies dx = du/(6x). Substituting these expressions into the integral gives: ∫ x √(3x^2+4) dx = ∫ (u-4)/6 √u du. Simplifying and evaluating the integral gives the final result.
For the integral ∫ cos^3 x sin x dx, we can use the substitution method. Let u = cos x, so du = -sin x dx. Substituting these expressions into the integral gives: -∫ u^3 du. Evaluating this integral gives the final result.