54.9k views
2 votes
Use interval notation to represent all values of x 6y=1-(x+7)+2x

User Villar
by
8.5k points

1 Answer

1 vote

Final answer:

The equation is simplified to x = 6y + 6, which suggests that x can take any real number as its value, thus the interval notation for x is (-∞, +∞).

Step-by-step explanation:

The equation provided in the question appears to be: 6y = 1 - (x + 7) + 2x. To find all the values of x in interval notation, we must first simplify and solve the equation for x.

Simplify the right hand side:

  • - (x + 7) + 2x = -x - 7 + 2x
  • = x - 7 (since -x + 2x = x)

Substitute back into the equation:

  • 6y = 1 + (x - 7)
  • 6y = x - 6

Solve for x:

  • x = 6y + 6

Since there is no restriction on y, x can take any real number as its value depending on y. Thus, the interval notation for x is (-∞, +∞), which means all real numbers are possible values for x.

User Calebmer
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories