Final Answer:
a.) The derivative of f²(x) is
![\[ f'(x) = (-147e^(7x) + 28e^(2x))/((e^(5x) + 1)^2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pc4mluxtomw70kmfr2jxk1qyr1gatx7wne.png)
b.) The derivative of f²(x) is
![\[ f'(x) = (343e^(7x) + 28e^(2x))/((e^(5x) + 1)^2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/10j2ukg064c4ut75gtotby9qku98fq4kwq.png)
Step-by-step explanation:
In both cases, we use the quotient rule to find the derivative. The quotient rule states that for a function
, the derivative
is given by
.
For option a:
![\[ u(x) = -21e^(7x) + 14e^(2x) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/e3gycwtjybuwrpx87sywz59dns30gfv77k.png)
![\[ v(x) = e^(5x) + 1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/x8nsrpd35xag3v2wc4fw9900h56483izkx.png)
![\[ u'(x) = -147e^(7x) + 28e^(2x) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gsx8jme3jxb0rm6s71cmxhmasojxb7gte9.png)
![\[ v'(x) = 5e^(5x) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/txs016aam8kiapkc0070a9lqr7oyp2z9sy.png)
Using the quotient rule, we get the derivative
![\[ f'(x) = (u'v - uv')/(v^2) = (-147e^(7x) + 28e^(2x))/((e^(5x) + 1)^2) \].](https://img.qammunity.org/2024/formulas/mathematics/high-school/7srtq27ay8mvvphz6wwa95yww0k4plzfmh.png)
For option b:
![\[ u(x) = 49e^(7x) + 14e^(2x) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4ljwknic9tbjaur7fqwzmugxcx2zeph951.png)
![\[ v(x) = e^(5x) + 1 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/x8nsrpd35xag3v2wc4fw9900h56483izkx.png)
![\[ u'(x) = 343e^(7x) + 28e^(2x) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/mxwios8f9jyn294vwfo2ag35yl4owuqi4e.png)
\
![[ v'(x) = 5e^(5x) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1vypwb65t1x07h4rcbgxex8jcllmtiu7zc.png)
Using the quotient rule, we get the derivative
![\[ f'(x) = (u'v - uv')/(v^2) = (343e^(7x) + 28e^(2x))/((e^(5x) + 1)^2) \].](https://img.qammunity.org/2024/formulas/mathematics/high-school/c76a09xiflfowleokqoxx121rpfb6kfm9l.png)
These derivatives provide the rate at which the given functions change with respect to the variable x.