Final answer:
Using properties of definite integrals and given integral values, the value of 45 ∫ 27 f(x) dx is calculated to be -13.
Step-by-step explanation:
To find the value of 45 ∫ 27 f(x) dx, we need to use the given information about the integrals of the function f(x) over various intervals:
- 12 ∫ 57 f(x) dx = −30
- 27 ∫ 57 f(x) dx = −18
- 45 ∫ 12 f(x) dx = 35
The properties of definite integrals allow us to deduce that:
- By adding the first two given integrals, we get 12 ∫ 57 f(x) dx + 27 ∫ 57 f(x) dx = 12 ∫ 27 f(x) dx, which simplifies to −30 + (−18) = 12 ∫ 27 f(x) dx.
- To find the value of 45 ∫ 27 f(x) dx, we need to subtract the integral 45 ∫ 12 f(x) dx from the result of 12 ∫ 27 f(x) dx.
- Therefore, we calculate 45 ∫ 27 f(x) dx by 12 ∫ 27 f(x) dx − (45 ∫ 12 f(x) dx), which equals to (−30 + −18) − 35 = −48 − 35 = −13.
Hence, the value of 45 ∫ 27 f(x) dx is −13.