6.6k views
3 votes
What is the exact value of tan(106)1−tan(106°)+tan(-61°) / (1-tan(106°) tan(-61°))?

User Asiimwe
by
8.1k points

1 Answer

3 votes

Final answer:

The exact value of the given expression is √3 / (4 * (1 - √3)).

Step-by-step explanation:

To find the exact value of the expression tan(106) / [1 − tan(106°) + tan(-61°)] / (1 - tan(106°) tan(-61°)), we need to evaluate the trigonometric functions for the given angles. Let's break it down step by step.

Step 1: Evaluate the trigonometric functions for the angles:

  • tan(106°) = √3
  • tan(-61°) = -√3

Step 2: Substitute the values into the expression:

tan(106) / [1 − tan(106°) + tan(-61°)] / (1 - tan(106°) tan(-61°)) = √3 / [1 - √3 + (-√3)] / [1 - √3 * (-√3)]

Step 3: Simplify the expression:

√3 / [1 - √3 + (-√3)] / [1 - √3 * (-√3)] = √3 / (1 - √3) / (1 + 3) = √3 / (1 - √3) / 4

So, the exact value of the given expression is √3 / (4 * (1 - √3)).

User Nerdtron
by
8.0k points