Final answer:
To subtract the rational expressions and simplify, we need to find a common denominator and then combine the numerators.
Step-by-step explanation:
To subtract the rational expressions and simplify, we need to find a common denominator. The denominators are both quadratic expressions, so we need to factor them.
The first denominator, x²+6x+8, factors as (x+4)(x+2).
The second denominator, x²-2x-8, factors as (x-4)(x+2).
Now we can rewrite the expression with the common denominator:
(1)/(x+4)(x+2) - (1)/(x-4)(x+2)
To subtract the fractions, we need to multiply the first fraction by (x-4)/(x-4) and the second fraction by (x+4)/(x+4).
Now we can combine the numerators:
(x-4) - (x+4)/(x+4)(x-4)
Simplifying the numerator, we get -8/(x+4)(x-4), which is the final simplified expression.