Final answer:
To find the integral of f(3t - 1)³ dt, use the substitution u = 3t - 1. The integral becomes (1/3) ∫(f(u)³) du.
Step-by-step explanation:
To find the integral of f(3t - 1)³ dt, we can use a substitution. Let u = 3t - 1, then du = 3dt. Rearranging the equation, we have dt = du/3. Substituting these values into the integral, we get:
∫(f(3t - 1)³) dt = ∫(f(u)³) (du/3) = (1/3) ∫(f(u)³) du.