Final Answer:
Evaluating the integral, we get:
![\[(1)/(A)\iint_R f(x,y) \, dA \approx -0.155\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/puc5d7jeo11iks2zxqnyzzauxgkr8t3i7z.png)
Therefore, the average value of
over the given rectangles is approximately:
a) 0.267
b) -0.155
Explanation:
To find the average value of
over the given rectangles, we need to calculate the double integral of
over each rectangle and divide by the area of the rectangle.
a) For the rectangle
, the average value of
is:
![\[(1)/(A)\iint_R f(x,y) \, dA = (1)/((\pi)/(6) \cdot (7\pi)/(6)) \iint_R \sin(x+y) \, dA\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dv2s8sgvlqdg7r7vj968lpiknkw62iqz7d.png)
Using the change of variables
and
, we can transform the integral to the region

![\[(1)/(A)\iint_R f(x,y) \, dA = (1)/((\pi^2)/(36)) \int_0^{(\pi)/(6)} \int_0^{(4\pi)/(3)-v} \sin(u) \, du \, dv\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/419f6w00ezyeox2g2h2eko0n429xuswkpx.png)
Evaluating the integral, we get:
![\[(1)/(A)\iint_R f(x,y) \, dA \approx 0.267\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/jynon89x7vcefukutn7hyayb7w16utukyb.png)
b) For the rectangle

![\[(1)/(A)\iint_R f(x,y) \, dA = (1)/((3\pi)/(2) \cdot (5\pi)/(4)) \iint_R \sin(x+y) \, dA\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/jek46h8slulitbqdh6fxa2q2oieons37gj.png)
Using the change of variables
we can transform the integral to the region

![\[(1)/(A)\iint_R f(x,y) \, dA = (1)/((15\pi^2)/(8)) \int_0^{(3\pi)/(2)} \int_0^{(11\pi)/(4)-v} \sin(u) \, du \, dv\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sgl0mpjgljzn2313d5c260j7xb3j2ddsch.png)
Evaluating the integral, we get:
![\[(1)/(A)\iint_R f(x,y) \, dA \approx -0.155\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/puc5d7jeo11iks2zxqnyzzauxgkr8t3i7z.png)
Therefore, the average value of
over the given rectangles is approximately:
a) 0.267
b) -0.155