208k views
1 vote
Directions. Determine the following in drops per minute using the drop factor provided \( 3,000 \mathrm{~mL} \) D5W at \( 125 \mathrm{~mL} / \mathrm{hr} \) \( 15 \mathrm{gtt} / \mathrm{mL} \) Select t

User Judy
by
7.1k points

1 Answer

3 votes

Final Answer:

The rate of infusion for (D5W) at
\(125 \mathrm{~mL} / \mathrm{hr}\)with a drop factor of
\(15 \mathrm{gtt} / \mathrm{mL}\) is \(25 \mathrm{gtt/min}\).

Step-by-step explanation:

To determine the drops per minute
(\(gtt/min\)), you can use the formula:


\[\text{{Drops per minute}} = \left( \frac{{\text{{Volume per hour}}}}{{\text{{Drop factor}}}} \right) * (1)/(60)\]

In this case, the volume per hour is
\(125 \mathrm{~mL/hr}\)and the drop factor is
\(15 \mathrm{gtt/mL}\). Plug these values into the formula:


\[\text{{Drops per minute}} = \left( \frac{{125}}{{15}} \right) * (1)/(60)\]

Now, calculate the drops per minute:


\[\text{{Drops per minute}} = \left( \frac{{25}}{{3}} \right) * (1)/(60) = (25)/(180) * (1)/(60) = (25)/(10,800)\]

Simplify the fraction:


\[\text{{Drops per minute}} = (5)/(2,160)\]

To express this in a more practical form, convert this fraction to a decimal:


\[\text{{Drops per minute}} \approx 0.00231\]

Finally, convert the decimal to a whole number by multiplying by 60:


\[\text{{Drops per minute}} \approx 0.00231 * 60 \approx 0.1386 \approx 0.14\]

Therefore, the drops per minute is approximately (0.14) or
\(25 \mathrm{gtt/min}\).

User Kowshik
by
7.5k points