Final answer:
To prove the given identity (x cosA+y sinA)²+(x sinA-y cosA)=x²+y², we expand the left side of the equation and simplify it step-by-step to show that it is equal to x² + y².
Step-by-step explanation:
The given expression is (x cosA+y sinA)²+(x sinA-y cosA)=x²+y².
To prove this identity, we expand the left side of the equation:
(x cosA+y sinA)²+(x sinA-y cosA)²
= (x² cos² A + 2xy sinA cosA + y² sin² A) + (x² sin² A - 2xy sinA cosA + y² cos² A)
Simplifying further, we get:
= x² cos² A + x² sin² A + y² sin² A + y² cos² A
= x² (cos² A + sin² A) + y² (sin² A + cos² A)
= x² + y²
This proves the given identity.