81,440 views
10 votes
10 votes
The function f(x) is graphed below. How many points on the graph

represent a relative extreme value?

The function f(x) is graphed below. How many points on the graph represent a relative-example-1
User Joseph Erickson
by
2.9k points

1 Answer

22 votes
22 votes

Answer:

2 points: b, d

Explanation:

Given the graph of a cubic function, you want to know the number of relative extreme points.

Relative extreme

A point is a relative extreme if the points on either side of it are both less than or both greater than the extreme point. A relative extreme is a peak point or valley point on a graph, a point where the slope is zero, and changes sign from one side of the point to the other.

Application

The relative extremes on the given graph are labeled 'b' and 'd'. There are two relative extremes.

__

Additional comment

Point 'b' is a relative minimum, where the slope changes from decreasing to increasing, and adjacent points are more positive. Point 'd' is a relative maximum, where the slope changes from increasing to decreasing, and adjacent points are more negative.

An "absolute extreme" is a relative extreme such that no points anywhere on the graph are more extreme.

The number of relative extremes a polynomial graph may have is 1 less than the degree of the polynomial. This can help you determine the degree from the number of extremes, or the number of extremes from the degree.

User Helloserve
by
2.7k points