34.5k views
2 votes
For each expression in the first column, choose the expression that completes an identity.

For each expression in the first column, choose the expression that completes an identity-example-1
User Kummo
by
8.4k points

1 Answer

5 votes

Answer:


\large\boxed{-\tan x \cos x} \longleftrightarrow \boxed{-\sin x}


\large\boxed{\vphantom{\frac12}\sec^2x - 1}\longleftrightarrow \boxed{(\sin^2x)/(\cos^2x)}


\large\boxed{(\sec x)/(\csc x)} \longleftrightarrow \boxed{\vphantom{\frac12}\tan x}


\large\boxed{1+\sin^2x} \longleftrightarrow \boxed{2-\cos^2x}


\large\boxed{\vphantom{\frac12}\cos^2x}\longleftrightarrow \boxed{(1)/(\sec^2x)}

Explanation:

To rewrite -tan(x)cos(x), we can use the quotient identity:


\boxed{\tan x=(\sin x)/(\cos x)}

Therefore:


\begin{aligned}-\tan x \cos x & = -(\sin x)/(\cos) \cdot \cos x\\\\& = -(\sin x\cos x)/(\cos) \\\\&=-\sin x\end{aligned}


\hrulefill

To rewrite sec²x - 1, we can use the Pythagorean identity and the quotient identity:


\boxed{\begin{array}c1 + \tan^2x = \sec^2x&\tan x=(\sin x)/(\cos x)\end{array}}

Therefore:


\begin{aligned}\sec^2x - 1 & = 1 + \tan^2x - 1\\\\&=\tan^2x\\\\&=(\sin^2x)/(\cos^2x)\end{aligned}


\hrulefill

To rewrite sec(x)/csc(x), we can use the reciprocal identities:


\boxed{\begin{array}c\sec(x) = (1)/(\cos(x))&\csc(x) = (1)/(\sin(x))\end{array}}

Therefore:


\begin{aligned}(\sec x)/(\csc x)&=((1)/(\cos x))/((1)/(\sin x))\\\\&=(1)/(\cos x) \cdot (\sin x)/(1)\\\\&=(\sin x)/(\cos x)\\\\&=\tan x\end{aligned}


\hrulefill

To rewrite 1 + sin²x, we can use the Pythagorean identity:


\boxed{\sin^2x + \cos^2x = 1}

Therefore:


\begin{aligned}1+\sin^2x&=1+(1-\cos^2x)\\\\&=1+1-\cos^2x\\\\&=2-\cos^2x\end{aligned}


\hrulefill

To rewrite cos²x, we can use the reciprocal identity:


\boxed{\cos x = (1)/(\sec x)}

Therefore:


\begin{aligned}\cos^2x&=\left(\cos x\right)^2\\\\&=\left((1)/(\sec x) \right)^2\\\\&=(1)/(\sec ^2x)\end{aligned}

User Max Hampton
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories