Answer:
![T_2 = 0.592](https://img.qammunity.org/2022/formulas/physics/college/vw2err81isq7efaazmn2thxyf980z8xacm.png)
Step-by-step explanation:
Given
![T_1 = 1.48s](https://img.qammunity.org/2022/formulas/physics/college/oxzvpf2shqsgt34v9pby9vgwz6s6k9o9sj.png)
See attachment for connection
Required
Determine the time constant in (b)
First, we calculate the total capacitance (C1) in (a):
The upper two connections are connected serially:
So, we have:
![(1)/(C_(up)) = (1)/(C) + (1)/(C)](https://img.qammunity.org/2022/formulas/physics/college/dzx1hhci8kn8pyjzqp1xdnf88uf6g1k1tw.png)
Take LCM
![(1)/(C_(up)) = (1+1)/(C)](https://img.qammunity.org/2022/formulas/physics/college/rvgxkzoadxpm1uktsassrspxe1bmax2lyo.png)
![(1)/(C_(up))= (2)/(C)](https://img.qammunity.org/2022/formulas/physics/college/z4ttjtsg1z7x8multgle2mlr166mk5skut.png)
Cross Multiply
![C_(up) * 2 = C * 1](https://img.qammunity.org/2022/formulas/physics/college/6zixtypkgrvi518o2ybteed2a7ssc90t0p.png)
![C_(up) * 2 = C](https://img.qammunity.org/2022/formulas/physics/college/l6nqv96km2b00fnjy30x04thxwev4r2i6i.png)
Make
the subject
![C_(up) = (1)/(2)C](https://img.qammunity.org/2022/formulas/physics/college/dg9rkzjhkksjq1fqo87ksskfcd7kodrcbr.png)
The bottom two are also connected serially.
In other words, the upper and the bottom have the same capacitance.
So, the total (C) is:
![C_1 = 2 * C_(up)](https://img.qammunity.org/2022/formulas/physics/college/3h18ffbboidzs5cvyx32qacst6y0myxnfq.png)
![C_1 = 2 * (1)/(2)C](https://img.qammunity.org/2022/formulas/physics/college/wpw4r9fmeidkx126bng4yjtfd68ap2dmir.png)
![C_1 = C](https://img.qammunity.org/2022/formulas/physics/college/4q4nwaucp6pgawwr2kwqg8vbwo942wrrz6.png)
The total capacitance in (b) is calculated as:
First, we calculate the parallel capacitance (Cp) is:
![C_p = C+C](https://img.qammunity.org/2022/formulas/physics/college/5va97uky2cjoykg1icgltpbh5ig9i92l94.png)
![C_p = 2C](https://img.qammunity.org/2022/formulas/physics/college/df32w5cbinhff9p93xuw045alxgvnxadb5.png)
So, the total capacitance (C2) is:
![(1)/(C_2) = (1)/(C_p) + (1)/(C) + (1)/(C)](https://img.qammunity.org/2022/formulas/physics/college/klus7azvcuajx5vuv6pv3ug52iqhulpr5s.png)
![(1)/(C_2) = (1)/(2C) + (1)/(C) + (1)/(C)](https://img.qammunity.org/2022/formulas/physics/college/q44nl36h7s0p280au9tzwql5121on7ej66.png)
Take LCM
![(1)/(C_2) = (1 + 2 + 2)/(2C)](https://img.qammunity.org/2022/formulas/physics/college/s6zre4vbbi37lu6lcwsdarv2fbpcfgv82w.png)
![(1)/(C_2) = (5)/(2C)](https://img.qammunity.org/2022/formulas/physics/college/q9emuzax17uz7eo7yh3qfac6smmrtdnhek.png)
Inverse both sides
![C_2 = (2)/(5)C](https://img.qammunity.org/2022/formulas/physics/college/b6c81aawafr3xt69qdh8lnejna8xjsgi3u.png)
Both (a) and (b) have the same resistance.
So:
We have:
Time constant is directional proportional to capacitance:
So:
![T\ \alpha\ C](https://img.qammunity.org/2022/formulas/physics/college/8utuu0jox4c63lx0jplaexijc3p5cqh46c.png)
Convert to equation
![T\ =kC](https://img.qammunity.org/2022/formulas/physics/college/on2hjrvx7ye041t8ca6vmnv279gj6cel4o.png)
Make k the subject
![k = (T)/(C)](https://img.qammunity.org/2022/formulas/physics/college/o2je24rdrrkg8mdvfrlfi35652k9z37v3o.png)
![k = (T_1)/(C_1) = (T_2)/(C_2)](https://img.qammunity.org/2022/formulas/physics/college/6x24jzqaejbft5h8h00gsfo5zkmqkxwfbd.png)
![(T_1)/(C_1) = (T_2)/(C_2)](https://img.qammunity.org/2022/formulas/physics/college/qg2nuvkchlez24m0bgfvcfi8r3lkdj0c6p.png)
Make T2 the subject
![T_2 = (T_1 * C_2)/(C_1)](https://img.qammunity.org/2022/formulas/physics/college/tqkau5rlgb9mn31egtce49h22b4lj5hgly.png)
Substitute values for T1, C1 and C2
![T_2 = (1.48 * (2)/(5)C)/(C)](https://img.qammunity.org/2022/formulas/physics/college/b5t8tgtup6l21lavv7gtn6cm8c5l883ein.png)
![T_2 = (1.48 * (2)/(5))/(1)](https://img.qammunity.org/2022/formulas/physics/college/w64ny0hfr73ci4zq9arght8v7czl4jhxek.png)
![T_2 = (0.592)/(1)](https://img.qammunity.org/2022/formulas/physics/college/q9v34cs562pxsru53h154kbjm8jbitcalq.png)
![T_2 = 0.592](https://img.qammunity.org/2022/formulas/physics/college/vw2err81isq7efaazmn2thxyf980z8xacm.png)
Hence, the time constance of (b) is 0.592 s