The amplitude is half the distance between the midline and the minimum point, which is 8.6 divided by 2. Therefore, the amplitude is 4.3.
to convert a point from polar coordinates
to rectangular coordinates
, you'll use the following formulas:
![\[x = r \cdot \cos(\theta)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gkh5xoogvrc7q1tsq25644ilxx159ug15a.png)
![\[y = r \cdot \sin(\theta)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/xon0v4zbrc08n1qznxbcafoocjkr8dufor.png)
Given the polar coordinates
:
Substitute the values into the formulas:
![\[x = 2 \cdot \cos\left((\pi)/(3)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/iuj4ybk8y9xiqe5s8u10tfbsierfv7kc7s.png)
![\[y = 2 \cdot \sin\left((\pi)/(3)\right)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zxao1200vtc03ikdxmb0jlfmmfnz9trcoh.png)
Calculate the trigonometric functions:


Substitute the trigonometric values into the formulas:
![\[x = 2 \cdot (1)/(2) = 1\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dr3o1029jrilcpqxpf8yws5ag2mzql383y.png)
![\[y = 2 \cdot (√(3))/(2) = √(3)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/r88yb3ksbo71r9gx3z5027rd87domj4u2d.png)
Therefore, the rectangular coordinates corresponding to the point given in polar coordinates
are
.