Final Answer:

Explanation:
The expression
represents a finite geometric series.
The sum of a finite geometric series with the first term a, common ratio r, and n terms is given by the formula:
![\[S_n = (a(r^n - 1))/(r - 1)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rgmwynctdhpj4z4djfva2tf0s1cgruamkm.png)
In this case,
. Plug these values into the formula:
![\[S_(2011) = (x(x^(2011) - 1))/(x - 1)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/eaqdl2u0qlfv0wzubkiekb2sridtzd5nfw.png)
Now, substitute \(x = -1\):
![\[S_(2011) = ((-1)((-1)^(2011) - 1))/((-1) - 1)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ssiy5p0rgtn98wb7qobtomo80x2zi004x2.png)
Since
the expression becomes:
![\[S_(2011) = (-1(-1 - 1))/(-2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kolrfzlerprih4xmvtilx6p0eg6vz15win.png)
Simplify the expression:
![\[S_(2011) = (-1 \cdot (-2))/(-2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7cxzyw1uxeqebcbbqn9jdyhmvqytch4k1l.png)
![\[S_(2011) = (2)/(-2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ifdgs028hyj4zusbuvvnj2to6plyvlhnz2.png)
![\[S_(2011) = -1\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5hddqzbhjgwfayz6ogatlt0boav81nimb7.png)
So,
