62.1k views
4 votes
What volume (in liters) would the gas occupy if its temperature was raised from 24.0 ∘C

to 31.0 ∘C
at constant 140 atm
?

User Kostiak
by
7.0k points

1 Answer

5 votes

The gas would occupy approximately 10.235 liters at 31.0°C and 140 atm.

We can use Charles's Law to solve this problem.

Charles's Law states that the volume of a gas is directly proportional to its temperature at constant pressure.

In other words, as the temperature of a gas increases, its volume also increases, and vice versa.

Here is the formula for Charles's Law:

V₁ / T₁ = V₂ / T₂

where:

V₁ is the initial volume of the gas

T₁ is the initial temperature of the gas (in Kelvin)

V₂ is the final volume of the gas

T₂ is the final temperature of the gas (in Kelvin)

We are given the following information:

V₁ = 10 liters (assuming this is the initial volume)

T₁ = 24.0°C + 273.15 K = 297.15 K

T₂ = 31.0°C + 273.15 K = 304.15 K

P = 140 atm (we are told that the pressure is constant)

We can rearrange the formula to solve for V₂:

V₂ = V₁ * T₂ / T₁

Now we can plug in the values:

V₂ = 10 liters * 304.15 K / 297.15 K

V₂ ≈ 10.235 liters

Therefore, the gas would occupy approximately 10.235 liters at 31.0°C and 140 atm.

User Michael Itzoe
by
8.4k points