Final answer:
The given equation can be proved using trigonometric identities. Starting with the left side of the equation, we simplify it step by step using identities such as sin²(θ) + cos²(θ) = 1 and sec²(θ) = 1 + tan²(θ). Finally, we obtain the right side of the equation, thus proving the given statement.
Step-by-step explanation:
To prove the given equation sin²(θ) + cot(θ)tan(θ) = sec²(θ) - cos(θ), we can use the trigonometric identity cot(θ) = cos(θ) / sin(θ). Let's start with the left side of the equation:
sin²(θ) + cot(θ)tan(θ)
= sin²(θ) + (cos(θ) / sin(θ)) * sin(θ)
= sin²(θ) + cos(θ)
Using the identity sin²(θ) + cos²(θ) = 1, we can rewrite the equation as:
= 1 - cos²(θ) + cos(θ)
= (1 + cos(θ))(1 - cos(θ)) + cos(θ)
= 1 - cos²(θ) + cos(θ) - cos²(θ)
= 1 - 2cos²(θ) + cos(θ)
Finally, using the identity sec²(θ) = 1 + tan²(θ), we can simplify the equation:
= 1 - 2(1 - sin²(θ)) + cos(θ)
= 1 - 2 + 2sin²(θ) + cos(θ)
= -1 + 2sin²(θ) + cos(θ)
= -cos²(θ) + sin²(θ) + cos(θ)
= sec²(θ) - cos(θ)