Expanding the expression
results in
, showcasing the step-by-step multiplication of each term and subsequent simplification of like terms.
Let's expand the expression step by step:
![\[2x^2(4x - 7xy + 5)(3y - 2)\]](https://img.qammunity.org/2024/formulas/mathematics/college/31nxvlmj63xc0rolgks3nkrv8o3d8ftjm4.png)
1. Multiply
by each term inside the first parenthesis:
![\[8x^3 - 14x^2y + 10x^2\]](https://img.qammunity.org/2024/formulas/mathematics/college/cwfmm44d1erlh13b3m5dg43zvjklg1u7xw.png)
2. Distribute the result to each term inside the second parenthesis:
![\[ (8x^3 - 14x^2y + 10x^2)(3y - 2)\]](https://img.qammunity.org/2024/formulas/mathematics/college/v9z603wnsaj3f2tdj5g4so960wblkaannc.png)
3. Multiply each term in the first expression by each term in the second expression:
![\[24x^3y - 16x^3 - 42x^2y^2 + 28x^2y + 30x^2 - 20x^2\]](https://img.qammunity.org/2024/formulas/mathematics/college/zx5ibufxbc5dug091tamcdbqlerdft4vjk.png)
4. Combine like terms:
![\[24x^3y - 16x^3 - 42x^2y^2 + 8x^2y + 10x^2\]](https://img.qammunity.org/2024/formulas/mathematics/college/p4p9fb5e4tz9arti8qd1tu8rk8owfilwqt.png)
So,
expands to
.
The complete question is:
Expland the given equation and write the result:
2x^2(4x-7xy+5) (3y-2)