Final answer:
The drama club sold 82 student tickets and 18 adult tickets.
Step-by-step explanation:
(a) Represent the unknowns:
Let x be the number of student tickets sold.
Let y be the number of adult tickets sold.
(b) Formulate the system of equations:
The total number of tickets sold is 100, so we have the equation:
x + y = 100
The total amount of money made is ₱15900, so we have the equation:
150x + 200y = 15900
(c) Solve the system of equations:
To solve the system of equations, we can use the method of substitution or the method of elimination. Let's use the method of substitution:
From the first equation, we have y = 100 - x. Substituting this into the second equation:
150x + 200(100 - x) = 15900
Simplifying the equation gives:
150x + 20000 - 200x = 15900
-50x = -4100
x = 82
Substituting x = 82 into the first equation gives:
82 + y = 100
y = 18
(d) Check the solutions:
Multiplying the number of student tickets by ₱150 and the number of adult tickets by ₱200, we get:
82 * 150 + 18 * 200 = 15900
So the solutions satisfy the given information.
(e) State the answer:
The drama club sold 82 student tickets and 18 adult tickets.