Final answer:
The exact value of sin(264°)cos(6°) cos(264°)sin(6°) is approximately -0.7192
Step-by-step explanation:
To find the exact value of sin(264°)cos(6°) cos(264°)sin(6°), we can use the trigonometric identity sin(a)cos(b) = (1/2)[sin(a+b) + sin(a-b)]. So, sin(264°)cos(6°) cos(264°)sin(6°) = (1/2)[sin(270°) + sin(258°)].
Now, sin(270°) = -1 and sin(258°) = -0.4384. Therefore, (1/2)[sin(270°) + sin(258°)] = (1/2)(-1 - 0.4384) = -0.7192.
Hence, the exact value of sin(264°)cos(6°) cos(264°)sin(6°) is approximately -0.7192.