88.9k views
3 votes
Find the equation of a line parallel to y - 3 = -3/2x that passes through the point (4, -5).

1 Answer

6 votes

Final answer:

To find the equation of a line parallel to y - 3 = -3/2x that passes through the point (4, -5), we need to find the slope of the given line and substitute the coordinates of the given point into the equation of the parallel line.

Step-by-step explanation:

To find the equation of a line parallel to y - 3 = -3/2x that passes through the point (4, -5), we need to determine the slope of the given line and use it to construct the equation of the parallel line. The given line can be rewritten as y = -3/2x + 3, where the slope is -3/2. Since the parallel line has the same slope, the equation will be y = -3/2x + b. We can substitute the coordinates of the given point (4, -5) to find the y-intercept (b).

Substituting the values, we get -5 = -3/2 * 4 + b. Simplifying this gives us -5 = -6 + b. Adding 6 to both sides of the equation, we find b = 1. Therefore, the equation of the line parallel to y - 3 = -3/2x that passes through the point (4, -5) is y = -3/2x + 1.

User Hemant Sharma
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories