Answer:
Explanation:
The sample proportion
![\hat p = (50)/(200)](https://img.qammunity.org/2022/formulas/mathematics/college/8gtlycflmyj2ej91dcftujqs9fgpv6464m.png)
![\hat p = 0.25](https://img.qammunity.org/2022/formulas/mathematics/college/ps706bb8xgggbgpq5u1noahgm4hrbbwohy.png)
The null hypothesis and the alternative hypothesis:
![H_o: p = 0.20 \\ \\ H_1 : p > 0.20](https://img.qammunity.org/2022/formulas/mathematics/college/1g8dqeyyny6ypuncxx83k4na4dblzx8ueq.png)
Thus; the test statistics is:
![Z = (\hat p - p_o)/((p_o(1-p_o))/(n) )](https://img.qammunity.org/2022/formulas/mathematics/college/eacejkoti6cx6ch1koby875f6fh3j8m6y8.png)
![Z = \frac{0.25 -0.20}{\sqrt{(0.20(1-0.20))/(200) }}](https://img.qammunity.org/2022/formulas/mathematics/college/u1ol8l6saqbqyuberk43x3me5erlf1cx73.png)
![Z = \frac{0.05}{\sqrt{(0.16)/(200) }}](https://img.qammunity.org/2022/formulas/mathematics/college/gtsmjswkfa4ne35j8ouaf9epoh6wbyef1c.png)
![Z = (0.05)/(√(0.0008 ))](https://img.qammunity.org/2022/formulas/mathematics/college/y128a8dn7w18wif25s2siao0ep4asxkpak.png)
![Z = 1.768](https://img.qammunity.org/2022/formulas/mathematics/college/q70zkeubpzo4snz4s2czq6ei5qvigt6yp3.png)
P-value = 2 × P(Z< - 1.768)
From the z tables
P-value = 2 × 0.03853
P-value = 0.07706
Thus, the p-value is 0.05 < P-value < 0.10