Answer:
Explanation:
From the given information:
Assume X represents the no. interviewed until 1 has advanced training.
X obeys a Geometric distribution with parameter 0.3.
X
Geom (0.30)
For geometric distribution, the probability density is:
![P(X =x) = p(1-p) ^(x-1) \ \ \ where; x =1,2,3...](https://img.qammunity.org/2022/formulas/mathematics/college/y15hc60rbcnm8n59au8fw83znjokvxsnvj.png)
TO calculate the required probability;
![P(X =5) =0.30 (1-0.30)^(5-1)](https://img.qammunity.org/2022/formulas/mathematics/college/i95rf33xbnbu0oovr5s1m6lb09wujdwo5n.png)
![P(X =5) =0.30 (0.70)^(4)](https://img.qammunity.org/2022/formulas/mathematics/college/2t4k12cq0w12tlr4ad2wph4t04wewr6l4w.png)
![P(X=5) = 0.30 * 0.2401](https://img.qammunity.org/2022/formulas/mathematics/college/nanv3l1fttlem08btl9zgslh6dbppgfy8h.png)
![\mathbf{P(X=5) = 0.07203}](https://img.qammunity.org/2022/formulas/mathematics/college/eqaw0yf8fbnym83tey4i7ltl44r4k9gktz.png)
(b)
The expected no. of applicants that need to be interviewed are:
![E(X)=(1)/(p)](https://img.qammunity.org/2022/formulas/mathematics/college/5aipl50uzzxpnbgg3c7xi2nz8q9dp7d16b.png)
![E(X)=(1)/(0.30)](https://img.qammunity.org/2022/formulas/mathematics/college/zu08k6rlquw4osvlgqzhy3t5g014mc0ir0.png)
E(X) = 3.33
(c)
The mean and the variance can be computed as:
![E(Y) = (1)/(p)](https://img.qammunity.org/2022/formulas/mathematics/college/krazwgyyxcd8eio67bhl9fg6ze4lsdjspt.png)
![E(Y) = (1)/(0.30)](https://img.qammunity.org/2022/formulas/mathematics/college/wl0spoffs4wb936n0e1bunvbcegaxy33gv.png)
E(Y) = 3.33
![V(Y)=(1-p)/(p^2)](https://img.qammunity.org/2022/formulas/mathematics/college/l6g2qxax15a02cqxmteml0xjcp805zfakl.png)
![V(Y)=(1-0.3)/(0.3^2)](https://img.qammunity.org/2022/formulas/mathematics/college/udtn79u5sc9wy5cj7bqxhtyxfwknuuopv0.png)
![V(Y)=(0.7)/(0.3^2)](https://img.qammunity.org/2022/formulas/mathematics/college/bmtlrahq6khlgfjch5l589hz7y06cerriz.png)
![V(Y)=7.778](https://img.qammunity.org/2022/formulas/mathematics/college/kqnqtngach3x3jmwvgbxxfveqfw4y5a6tf.png)
Suppose C represents the no. of the total cost and given that each interview costs $30.
Then C = 30Y
Recall that; C is constant for a random variable X
∴
E(C) = E(30Y)
E(C) = 30E(Y)
E(C) = 30*3.33
E(C) =99.9
E(C)
100
V(C) = V(30Y)
V(C) = 900 V(Y)
V(C) = 900*7.778
V(C) = 7000.2
V(C)
7000