Answer:
Explanation:
Given that:
For PCC
The sample size
= 25
sample mean
= 75
standard deviation
= 17.50
For ELAC
The sample size
= 20
Sample mean
![\overline x_2 = 89](https://img.qammunity.org/2022/formulas/mathematics/college/na6mjsl6qfvj3u7o0w91lw3wj2mlz5pxby.png)
Standard deviation
= 14.40
Significance level = 0.05
The null hypothesis:
![H_o : \mu_1 =\mu_2](https://img.qammunity.org/2022/formulas/mathematics/college/lsrd01ojq9xtmfvq85gnzlk6zuz6hch9qx.png)
The alternative hypothesis;
![H_1 : \mu_1< \mu_2](https://img.qammunity.org/2022/formulas/mathematics/college/g0felcbbxkpk00kmksb1xlz4birv8rkebb.png)
Since the population standard deviation are synonymous pooled standard deviation; Then:
![sp = \sqrt {\frac {(n_1-1)s_1^2)+(n_2-1)s_2^2 }{n_1+n_2-2}](https://img.qammunity.org/2022/formulas/mathematics/college/s7v9q0l1za535vfkdagor4hug1981p56s6.png)
![sp = \sqrt {\frac {(25-1)17.50^2)+(20-1)14.40^2 }{25+20-2}](https://img.qammunity.org/2022/formulas/mathematics/college/noqxlo4xg5egno3p1dinqehd1sr5q1amxm.png)
![sp = 16.20](https://img.qammunity.org/2022/formulas/mathematics/college/djb7supgqwxhr504pvzqsnfr9s6ypilh2m.png)
The test statistics can be computed as:
![t = \frac{\overline x_1 -\overline x_2}{sp * \sqrt{(1)/(n_1) + (1)/(n_2) }}](https://img.qammunity.org/2022/formulas/mathematics/college/rerknz8g45dztp17tjemr9ookox0g4a1lf.png)
![t = \frac{75-89}{16.20 * \sqrt{(1)/(25) + (1)/(20) }}](https://img.qammunity.org/2022/formulas/mathematics/college/rojmn95fcb7jgcgra6me3jblfy8qzw2jkr.png)
![t = -2.88](https://img.qammunity.org/2022/formulas/mathematics/college/x8p97vmpqc9hpih74a71ss50e70r27xmuk.png)
The p-value
![= P(t_(n_1+n_2-1) <t)](https://img.qammunity.org/2022/formulas/mathematics/college/q8ipodqdvz55yokxgjm5jdimih63mzmewr.png)
![= P(t_(43) <-2.88)](https://img.qammunity.org/2022/formulas/mathematics/college/jtg2ba7ls6trvb9ei4l4wpd8l3fr2h4ctv.png)
= 0.0031
Decision Rule: To reject the null hypothesis if the p-value is less than the significance level
Conclusion: There is sufficient evidence to conclude that the mean amount spent by all PCC students is less than the mean amount spent by all ELAC students.