Answer:
21.96 ; 24.72
Explanation:
Given that :
Give the equation:
A(t) = 700(1.03)^t
A.)
Average rate of change over the first 4 years ;
(t=0 to t=4)
At t = 0
A(0) = 700(1.03)^0 = 700
A(1) = 700(1.03)^1 = 721
A(2) = 700(1.03)^2 = 742.63
A(3) = 700(1.03)^3 = 764. 9089
A(4) = 700(1.03)^4 = 787.856167
[(721 - 700) + (742.63 - 721) + (764.9089 - 742.63) + (787.856167 - 764.9089)] / 4
= 87.856167 / 4
= 21.96404175
= 21.96
Over the 2nd 4 years :
A(4) = 700(1.03)^4 = 787.856167
A(5) = 700(1.03)^5 = 811.49185201
A(6) = 700(1.03)^6 = 835.8366075703
A(7) = 700(1.03)^7 = 860.911705797409
A(8) = 700(1.03)^8 = 886.73905697133127
[(811.49185201 - 787.856167) + (835.8366075703 - 811.49185201) + (860.911705797409 - 835.8366075703) + (886.73905697133127 - 860.911705797409)] / 4
= 98.88288997133127 / 4
= 24.72