60.2k views
2 votes
Solve for the value of tan 6 between 0° and 90° if cos 0 = 0.25.

User P Varga
by
8.3k points

1 Answer

0 votes

Final answer:

To solve for the value of tan 6 between 0° and 90° if cos 0 = 0.25, use the trigonometric identity tan x = sin x / cos x. First, find the value of sin 0 using the Pythagorean identity sin² x + cos² x = 1. Then substitute the values of sin 0 and cos 0 into the trigonometric identity tan x = sin x / cos x to find the value of tan 6.

Step-by-step explanation:

To solve for the value of tan 6 between 0° and 90° if cos 0 = 0.25, we can use the trigonometric identity tan x = sin x / cos x. Since we know the value of cos 0, we can find the value of sin 0 using the Pythagorean identity sin² x + cos² x = 1. Then we can substitute these values into the trigonometric identity tan x = sin x / cos x to find the value of tan 6.

First, find the value of sin 0:

sin² 0 + cos² 0 = 1

sin² 0 + 0.25² = 1

sin² 0 + 0.0625 = 1

sin² 0 = 1 - 0.0625

sin² 0 = 0.9375

sin 0 = √0.9375

sin 0 ≈ 0.96825

Now substitute the values of sin 0 and cos 0 into the trigonometric identity tan x = sin x / cos x to find the value of tan 6:

tan 6 = sin 6 / cos 6

tan 6 = (0.96825) / (0.25)

tan 6 ≈ 3.873

User Phantom
by
7.9k points