415,687 views
9 votes
9 votes
Simplify(a+b) (2a-3b+c)-(2a-3b)​

User Kungphil
by
2.9k points

1 Answer

14 votes
14 votes

Answer:

ac+bc+2a^2-ab-3b^2-2a+3b

Explanation:

Expand (a+b)(2a−3b+c)(a+b)(2a-3b+c) by multiplying each term in the first expression by each term in the second expression.

a(2a)+a(−3b)+ac+b(2a)+b(−3b)+bc−(2a−3b)a(2a)+a(-3b)+ac+b(2a)+b(-3b)+bc-(2a-3b)

Simplify each term.

2a2−3ab+ac+2ba−3b2+bc−(2a−3b)2a2-3ab+ac+2ba-3b2+bc-(2a-3b)

Add −3ab-3ab and 2ba2ba.

2a2−ab+ac−3b2+bc−(2a−3b)2a2-ab+ac-3b2+bc-(2a-3b)

Apply the distributive property.

2a2−ab+ac−3b2+bc−(2a)−(−3b)2a2-ab+ac-3b2+bc-(2a)-(-3b)

Multiply 22 by −1-1.

2a2−ab+ac−3b2+bc−2a−(−3b)2a2-ab+ac-3b2+bc-2a-(-3b)

Multiply −3-3 by −1-1.

2a2−ab+ac−3b2+bc−2a+3b2a2-ab+ac-3b2+bc-2a+3b

Reorder:

Move −3b2-3b2.

2a2−ab+ac+bc−3b2−2a+3b2a2-ab+ac+bc-3b2-2a+3b

Move −ab-ab.

2a2+ac+bc−ab−3b2−2a+3b2a2+ac+bc-ab-3b2-2a+3b

Move 2a22a2.

ac+bc+2a2−ab−3b2−2a+3b

User Lppier
by
2.7k points