Answer:
ac+bc+2a^2-ab-3b^2-2a+3b
Explanation:
Expand (a+b)(2a−3b+c)(a+b)(2a-3b+c) by multiplying each term in the first expression by each term in the second expression.
a(2a)+a(−3b)+ac+b(2a)+b(−3b)+bc−(2a−3b)a(2a)+a(-3b)+ac+b(2a)+b(-3b)+bc-(2a-3b)
Simplify each term.
2a2−3ab+ac+2ba−3b2+bc−(2a−3b)2a2-3ab+ac+2ba-3b2+bc-(2a-3b)
Add −3ab-3ab and 2ba2ba.
2a2−ab+ac−3b2+bc−(2a−3b)2a2-ab+ac-3b2+bc-(2a-3b)
Apply the distributive property.
2a2−ab+ac−3b2+bc−(2a)−(−3b)2a2-ab+ac-3b2+bc-(2a)-(-3b)
Multiply 22 by −1-1.
2a2−ab+ac−3b2+bc−2a−(−3b)2a2-ab+ac-3b2+bc-2a-(-3b)
Multiply −3-3 by −1-1.
2a2−ab+ac−3b2+bc−2a+3b2a2-ab+ac-3b2+bc-2a+3b
Reorder:
Move −3b2-3b2.
2a2−ab+ac+bc−3b2−2a+3b2a2-ab+ac+bc-3b2-2a+3b
Move −ab-ab.
2a2+ac+bc−ab−3b2−2a+3b2a2+ac+bc-ab-3b2-2a+3b
Move 2a22a2.
ac+bc+2a2−ab−3b2−2a+3b