Answer: x=2πn (n=0, 1, 2, 3,...)
Explanation:
2sin²x-cosx+1=0
2(1-cos²x)-cosx+1=0
2(1)-2(cos²x)-cosx+1=0
2-2cos²x-cosx+1=0
-2cos²x-cosx+3=0
Multiply both parts of the equation by -1:
2cos²x+cosx-3=0
Let cosx=t
Domain:
-1≤cosx≤1
Hence, -1≤t≤1
2t²+t-3=0
D=b²-4ac
a=2 b=1 c=-3
D=1²-4(2)(-3)
D=1+24
D=25
√D=√25
√D=5