The helium-filled balloon can support a maximum load of approximately 7241.66 kg while floating at an altitude with helium density 0.16 kg/m³ and air density 1.25 kg/m³, assuming negligible volume for the load, support cables, and basket.
1. Calculate the Volume of the Sphere:
![\[ V_{\text{sphere}} = (4)/(3) \pi r^3 \]](https://img.qammunity.org/2024/formulas/physics/college/9iymm2sg90jbovab74v4a1tk59ru87ezjk.png)
Substitute
into the formula and calculate
.
![\[ V_{\text{sphere}} = (4)/(3) \pi (12.0 \ \text{m})^3 \]\[ V_{\text{sphere}} \approx 7238.23 \ \text{m}^3 \]](https://img.qammunity.org/2024/formulas/physics/college/ahuy2eidz1xprlg5eyts5viwq2o6jmidiz.png)
2. Calculate the Effective Density of the Displaced Air:
![\[ \rho_{\text{effective}} = \rho_{\text{air}} - \rho_{\text{helium}} \]\[ \rho_{\text{effective}} = 1.25 \ \text{kg/m}^3 - 0.16 \ \text{kg/m}^3 \]\[ \rho_{\text{effective}} = 1.09 \ \text{kg/m}^3 \]](https://img.qammunity.org/2024/formulas/physics/college/vclpkhj26kzuwp46kll3j9hwey28thymq3.png)
3. Calculate the Volume of Displaced Air:
![\[ V_{\text{displaced}} = \frac{V_{\text{sphere}}}{\rho_{\text{effective}}} \]\[ V_{\text{displaced}} = \frac{7238.23 \ \text{m}^3}{1.09 \ \text{kg/m}^3} \]\[ V_{\text{displaced}} \approx 6643.80 \ \text{m}^3 \]](https://img.qammunity.org/2024/formulas/physics/college/epmfsgvf91f8xpqx4kdjkvo57ctii9mrb2.png)
4. Calculate the Maximum Load the Balloon Can Support:
![\[ m_{\text{max load}} = \rho_{\text{effective}} \cdot V_{\text{displaced}} \]\[ m_{\text{max load}} = 1.09 \ \text{kg/m}^3 * 6643.80 \ \text{m}^3 \]\[ m_{\text{max load}} \approx 7241.66 \ \text{kg} \]](https://img.qammunity.org/2024/formulas/physics/college/z6f1m5dlc7o2entikwa1lftqqyec21bs1d.png)
So, the maximum load that the balloon can support while floating at the specified altitude is approximately 7241.66 kg.