The Coulomb forces between the charges are approximately 90 N (attractive), 225 N (repulsive), and 43.2 N (attractive) for the respective pairs of charges.
Let's calculate the magnitudes of the Coulomb forces using Coulomb's Law for each pair of charges.
![\[ F_1 = k (q_1 q_2)/(r_1^2) \]\[ F_1 = (8.99 * 10^9 \ \text{N m}^2/\text{C}^2) \frac{(6.00 * 10^(-6) \ \text{C})(1.50 * 10^(-6) \ \text{C})}{(0.03 \ \text{m})^2} \]](https://img.qammunity.org/2024/formulas/physics/college/u3ownuyc11e08cmphrk7uafnd6il7w8ed4.png)
![\[ F_1 \approx 90 \ \text{N} \]](https://img.qammunity.org/2024/formulas/physics/college/cnwsxsd2b36ni0tuw5pqdlgwdjiyoa3fw9.png)
Now, for the second pair of charges:

![\[ F_2 = k (q_1 q_2)/(r_2^2) \]\[ F_2 = (8.99 * 10^9 \ \text{N m}^2/\text{C}^2) \frac{(1.50 * 10^(-6) \ \text{C})(-2.00 * 10^(-6) \ \text{C})}{(0.02 \ \text{m})^2} \]](https://img.qammunity.org/2024/formulas/physics/college/z75cchxq87nxj8ll4k00imgxdenx0b39qz.png)
Calculating
:
![\[ F_2 \approx -225 \ \text{N} \]](https://img.qammunity.org/2024/formulas/physics/college/hmvqykxt4ypno5fw69cjktkge68q0t4nwm.png)
Finally, for the third pair of charges:

![\[ F_3 = k (q_1 q_2)/(r_3^2) \]\[ F_3 = (8.99 * 10^9 \ \text{N m}^2/\text{C}^2) \frac{(6.00 * 10^(-6) \ \text{C})(-2.00 * 10^(-6) \ \text{C})}{(0.05 \ \text{m})^2} \]](https://img.qammunity.org/2024/formulas/physics/college/qguetrvyhp6tdoigrd376vd7ax9vo17rmt.png)
![\(F_3\):\[ F_3 \approx -43.2 \ \text{N} \]](https://img.qammunity.org/2024/formulas/physics/college/21g5c6jz10903jt555zwm8pqic09k7v5sq.png)
So, the magnitudes of the Coulomb forces are approximately:

The direction of the force is attractive if the charges have opposite signs (as in
and
, and repulsive if they have the same sign (as in
.