134k views
4 votes
What is the slope between the points (3, -5) and (-1, 7)?
a) 3
b) -2
c) -3
d) 2

User Escapedcat
by
7.5k points

2 Answers

4 votes

Final answer:

The slope between the points (3, -5) and (-1, 7) is found using the slope formula and results in a slope of -3.

The correct answer is C.

Step-by-step explanation:

The slope of a line passing through two points can be found using the slope formula which is (y2 - y1) / (x2 - x1), where (x1, y1) and (x2, y2) are the coordinates of the two points. In this case, the points are (3, -5) and (-1, 7).

To find the slope between (3, -5) and (-1, 7), follow these steps:

  1. Subtract the y-coordinate of the second point from the y-coordinate of the first point: 7 - (-5) = 7 + 5 = 12.
  2. Subtract the x-coordinate of the second point from the x-coordinate of the first point: -1 - 3 = -4.
  3. Divide the difference in y-coordinates by the difference in x-coordinates: 12 / (-4) = -3.

Therefore, the slope between these two points is -3, which corresponds to option c).

J11

User Shunty
by
8.2k points
5 votes

Final answer:

The slope between the points (3, -5) and (-1, 7) is calculated using the slope formula and is found to be -3. The correct option is c.

Step-by-step explanation:

To find the slope between the points (3, -5) and (-1, 7), we apply the slope formula:

m = (y2 - y1) / (x2 - x1)

Where (x1, y1) is the first point and (x2, y2) is the second point.

Using the points given:

m = (7 - (-5)) / (-1 - 3)

m = (12) / (-4)

m = -3

Thus, the slope of the line between the two points is -3, which corresponds to option C. The correct option is c.

User Buttercup
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories