66.2k views
3 votes
You install 780 feet of fencing around the perimeter of a rectangular yard. The length of the yard is 220 feet. What is the width of the yard? You must write down the equation you are using to solve

a) Width = 220 - 780
b) Width = (780 - 220) / 2
c) Width = (780 - 2 * 220)
d) Width = 780 - 2 * 220

User Sunilson
by
8.3k points

1 Answer

2 votes

Final answer:

To determine the width of the yard with a perimeter of 780 feet and a length of 220 feet, the correct formula is Width = (780 - 220) / 2, resulting in a width of 170 feet.

Step-by-step explanation:

To find the width of a yard when the perimeter is known, you can use the formula Perimeter = 2×(Length + Width). Given the total perimeter is 780 feet and one length is 220 feet, the equation can be rearranged to solve for width:

  • 780 = 2×(220 + Width)
  • 780 = 440 + 2×Width
  • 340 = 2×Width
  • Width = 340 / 2
  • Width = 170

The width of the yard is 170 feet. Therefore, the correct equation to solve for the width is option b) Width = (780 - 220) / 2.

User Vince Carter
by
7.1k points