Answer:
![2x+(5x^2)/(2)+(x^4)/(8)+C](https://img.qammunity.org/2022/formulas/mathematics/college/9lomvzj1w8el56af3303dskcfh93fe5llr.png)
Explanation:
I notice you have a dx at the end of the equation, this leads me to believe this is an integral. With no bounds of integration, I will solve for the indefinite integral. I will also interpret your equation as follows:
![\int \:2+5x+(1)/(2)x^3dx](https://img.qammunity.org/2022/formulas/mathematics/college/i3bd5gszzazfi08px0q5lm4q47pj29qz3p.png)
Sum rule tells us:
![\int \:2dx+\int \:5xdx+\int (1)/(2)x^3dx](https://img.qammunity.org/2022/formulas/mathematics/college/qt7cdlxbnxjilm0aohp5wfh00iokwjc8cf.png)
From this we get:
![2x+(5x^2)/(2)+(x^4)/(8)](https://img.qammunity.org/2022/formulas/mathematics/college/8nby16jytwuf9c77qbtpu35mjipvqufdvp.png)
Don't forget to add the constant!
![2x+(5x^2)/(2)+(x^4)/(8)+C](https://img.qammunity.org/2022/formulas/mathematics/college/9lomvzj1w8el56af3303dskcfh93fe5llr.png)