The measurements of Angle ABC = Angle ABC = 70°.
Explanation:
Understanding concept:
Here, we are given with a triangle that has two sides equal. The triangle which has two sides as equal is said to be an isosceles triangle. The triangle which has two sides equal will also have two angles equal and the other different. In this question, we are given with the measurement of an angle of isosceles triangle. We are asked to find the other angle in this triangle. To find. the answer, we use the concept of angle sum property of the triangle. Thai concept says that all the angles in a triangle together adds up to 180°. If no, then it's not considered as a triangle.
Solution:
Angles sum property of a triangle (∆) = 180°
Angle BAC + Angle ABC + Angle ACB = 180°
Substitute all the given values then
→ 40° + x° + x° = 180°
Add the variables together .i.e., x° + x° is 2x.
→ 40° + 2x° = 180°
Shift, the number 40° from LHS to RHS, changing it's sign.
→ 2x° = 180° - 40°
Subtract the values on RHS.
→ 2x° = 140°
Shift the number 2° from LHS to RHS.
→ x° = 140°/2°
Simplify the fraction to get the value of x.
→ x° = 70°
Therefore, x = 70°
Answer: Hence, the measurement of both the base unknown angles x is 70°.
Explore More:
Let's check whether the values of x is true or false.
Verification:
If the values of x = 70° then the equation is
40° + x° + x° = 180°
Substitute the values of x = 70° then
→ 40° + 70° + 70° = 180°
Add the values on LHS.
→ 40° + 140° = 180°
→ 180° = 180°
LHS = RHS is true for x = 70°
Hence, verified.
Please let me know if you have any other questions.