Answer:
The equation of the elipse is
![(x^2)/(169) + (y^2)/(25) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/256d7038d8d3y2bfdsrysyq740t9y8x39n.png)
Explanation:
Equation of an elipse:
The equation of a elipse with centre
has the following format:
![((x - x_c)^2)/(a^2) + ((y - y_c)^2)/(b^2) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/dql04nybdvfpsv9zutgokl4n097j04h47f.png)
Centre at (0,0):
Means that
.
So
![(x^2)/(a^2) + (y^2)/(b^2) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/t4ywzi6i3il4fd989rhon2vas0v9cwl48c.png)
Vertex at (13,0):
Vertex at 13 means that
![a = 13, a^2 = 13^2 = 169](https://img.qammunity.org/2022/formulas/mathematics/college/uz0gevhw35c3w7fsnjtxpmvqf8rv1bmun5.png)
Focus at (-12,0):
Means that
![c = 12, c^2 = 12^2 = 144](https://img.qammunity.org/2022/formulas/mathematics/college/xjns4hqq3aehz2j42ciwmzya34r67nlsg6.png)
We have that:
![a^2 = b^2 + c^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/kw76cxh9wnfrr9jdwxa1s0wd2flypzwf9a.png)
So
![169 = b^2 + 144](https://img.qammunity.org/2022/formulas/mathematics/college/4ssqihjlw23wl5t7qd8kyxnev4p9rpdtmv.png)
![b^2 = 25](https://img.qammunity.org/2022/formulas/mathematics/college/kljj7yug103ql7xdv70w4zrf9hmq74kr82.png)
So, the equation of the elipse is
![(x^2)/(169) + (y^2)/(25) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/256d7038d8d3y2bfdsrysyq740t9y8x39n.png)