147k views
4 votes
Write the equation of the line in slope-intercept form that passes through the given points.

(0, -2) and (4, 10)

A) y = 3x - 2
B) y = 2x - 2
C) y = 2x - 4
D) y = 4x - 2

User Flows
by
8.6k points

1 Answer

2 votes

Final answer:

The equation of the line passing through the points (0, -2) and (4, 10) is y = 3x - 2.

Step-by-step explanation:

The equation of a line in slope-intercept form is given by y = mx + b, where m represents the slope of the line and b represents the y-intercept. To find the equation of the line passing through the points (0, -2) and (4, 10), we can first calculate the slope (m) of the line using the formula: m = (y2 - y1)/(x2 - x1). In this case, the slope is (10 - (-2))/(4 - 0) = 12/4 = 3. Thus, the equation of the line is y = 3x + b. To find the value of b, we can substitute the coordinates of one of the points into the equation. Let's use the first point (0, -2). Substituting these values and solving for b, we get -2 = 3(0) + b. Simplifying, we find b = -2. Therefore, the equation of the line passing through the given points is y = 3x - 2, which corresponds to option A.

User Metaphori
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories